Sunrise:

Panchromatic SED Models of Simulated Galaxies

Lecture 2: Working with Sunrise

Patrik Jonsson

Harvard-Smithsonian Center for Astrophysics

Lecture outline

- Lecture 1: Why Sunrise? What does it do? Example science. How to use the outputs? Projects?
- Lecture 2: Sunrise work flow. Parameters, convergence, other subtleties.
- Lecture 3: Radiation transfer theory. Monte Carlo. Polychromatic MC.
- Lecture 4: Dust emission, dust self-absorption. Sunrise on GPUs.

Working with Sunrise Episode 1: Building

A long process...

This is explained in detail on "Compiling" page on the Sunrise Wiki:

- Sunrise is written in C++, with several dependencies
 - Blitz++ (matrix library)
 - CCfits (C++ I/O library)

 - Boost (generally useful C++ stuff)
 - HDF5 (optional)
 - CUDA (if you have a GPU)
- Ø Works with gcc or Intel icpc

A long process...

Won't go through the whole thing, but:
Unless you are very experienced in compiling C++ programs, expect to have to fiddle a bit. Every system's a bit different.
If you really can't figure it out, post to the Sunrise discussion group.

Working with Sunrise Episode 2: Workflow

Workflow

This is explained in detail on "Sunrise Overview" page on the Sunrise Wiki Processing a hydro snapshot with Sunrise involves running 3 executables sfrhist - calculation of source SEDs and adaptive-mesh grid mcrx – the actual radiation transfer calculation Solution of outputs over filter bands to get magnitudes and images

First: sfrhist

- Loads the snapshot data
- Constructs the adaptive mesh grid for the dust distribution
- Calculates the SEDs of the stellar particles, based on age and metallicity
- Calculates AGN SED (if applicable)

Second: mcrx

Does the Monte Carlo radiation transfer (we'll talk about this tomorrow) Proceeds in several stages: ø without dust ø with dust ø dust temperature ø dust emission We looked at the output files yesterday

Third: broadband

 Creates images and magnitudes in specific filter bands
 Can do redshift effects:

 k-correction
 surface-brightness dimming

Working with Sunrise Episode 3: Configuration

Configuration files

Each of the executables
 take a configuration file
 as the argument
 keyword-value pairs

😝 🔿 🔿 emacs at poohma @fundamental-mode@ @savehist-mode@abbr /	
# This file contain	s general settings for sfrhist. It is included by
# the file-specific	configuration files
runname Sbc	201a-u4/set5bs / run designation
<pre>nbodycod GADGET # we are working with GADGET snapshots simparfile ./simpar / symbolic link to GADGET parameter file stellarmodelfile ~/dust_data/stellarmodel/Patrik-imfKroupa-Zmulti-ml.fits</pre>	
min_wavelength	89.0e-9
max_wavelength	1e-3
use_mappings_seds mappings_sed_file mappings_pdr_fracti mappings_mcl use_teff mappings_pdr_file cluster_mappings_pa	<pre>true / Use mappings SEDs for young stars ~/mappings/Smodel.fits on 0.2 / Amount of light from mappings PDR 1e5 / Mappings cloud mass true / Use eff temp when calculating ISM pressure ~pjonsson/mappings/Z1_AvRadii.txt rticles true</pre>
include_file ~/I	C-snapshots/gall-Sbc-set2
include_file ~/1	L-snapshots/gal2-sbc-set2
ic_directory ~/I ic_snapshot_directo	Cs/ / Directory with initial conditions ry ~/IC-snapshots/ / initial snapshots
CCfits_verbose fals seed 0	e

:--@ sfrhist.stub All (1,0) (Fundamental Abbrev)

sfrhist configuration

- The sfrhist options are explained in detail in "Sfrhist Config and Output Format" on the Wiki.
- sfrhist configuration comprises 4 main sets:
 stellar population model (e.g. Starburst99)
 MAPPINGS parameters
 grid creation parameters
 galaxy initial conditions (if simulation starts with galaxies)

MAPPINGS models

- Star-forming regions are a problem:
 - Young stars are enshrouded in dust
 - HII regions and molecular clouds are (normally) not resolved
 - Want to predict line strengths
- Solution: Use a separate "sub-particle" model of HII regions/MCs

MAPPINGS models

MAPPINGS models are parametrized by: Z (from hydro) ISM pressure (from sim) PDR covering frac Cluster mass 2 config parameters Each particle <10Myr old
 </p> gets its own model @ Groves et al. (2008)

Grid creation parameters

- Sunrise uses a recursively refined grid structure ("octree")
- Algorithm described in Sunrise papers
- There is NO local way to determine refinement
 depends on unknown radiation field
- Parameters explained on Wiki: <u>http://</u> <u>code.google.com/p/sunrise/wiki/</u> <u>SfrhistConfigAndOutputFileFormat</u>
- Sufficient grid resolution is very important for converged results!
 Read the "ConvergenceTests" page on the Wiki!

Grid creation step 1

First, subdivide cells until: cells are no larger than the particles optical depth through cells are below specified value: tau_tolerance, or max_level is reached This ensures all structure has been captured

Grid creation step 2

Second, re-unify cells if: they are sufficiently uniform (metal_tolerance), or they are sufficiently low density they won't affect the result (n_rays_estimated), and optical depth through unified cell still would be below tau_tolerance This minimizes the number of cells necessary

Initial conditions parameters

- Only applies if your simulation starts with preexisting galaxies (and not for Gasoline)
 Need to specify SF history and metallicity distribution for these galaxies
 - ic_file<i> a snapshot of the isolated
 progenitor galaxy
 - (disk|bulge)popmode<i> the SF history (constant, exponential, or instantaneous)
 - @ central_metallicity<i>
 - @ metallicity_gradient<i>
- see special requirements for the snapshots

mcrx configuration

Described in detail on the Wiki at "mcrx config and output file format"
Many settings, quite complicated
camera setup parameters
dust model/dust emission parameters
monte carlo/radiation transfer parameters
runtime stuff

mcrx stages

The calculation proceeds in several stages Make images of stellar emission w/o dust Make images of stellar emission w dust Stimate stellar radiation intensity in cells Calculate dust temperature and dust self heating (iterative) Make images of dust emission Can be restarted at any stage

Camera settings

- Cameras register the radiation reaching them from the simulated object
- Can be arranged isotropically or in individually specified positions
- Also defines their distance and resolution

Dust model parameters

- A dust model specifies the dust opacities
- Two options:
 - If you don't care about dust emission, just specify opacity, albedo, scattering asymmetry
 - Otherwise, you need a full model of grain composition and size distribution.

Dust model parameters

For a physical model, use grain_model "wd01_Brent_PAH" Ø Picks a model from Weingartner & Draine (2001)specify with wd01_parameter_set @ e.g. "MW3.1_60_DL07" Milky Way, LMC and SMC models exist

Dust density parameters

- Affects the conversion from density of gas and metals in the Gadget snapshot to density of dust
- @ dust_to_metal_ratio normally 0.4
- @ dust_to_gas_ratio normally 0
- Multiphase parameters

Multiphase model

- There's also clumps
 without embedded stars
- These still matter for the dust attenuation
- Can use Springel & Hernquist (03) multiphase model to estimate mass in diffuse vs. clumps.
- Clumps are assumed to be dense enough to have negligible cross section

This option makes a HUGE difference in gas-rich mergers!

MC/Radiation transfer parameters

- Determines how the actual calculation is performed
 - The number of MC rays used (more rays, less noise, more time)
 - The ray intensity below which it may be dropped or above which it will be split
 - Reference wavelengths for the polychromatic algorithm
 - Number of wavelengths for the dust temperature determination
 - Accuracy with which radiative equilibrium is reached - important

MC/Radiation transfer parameters

- Determines how the actual calculation is performed
- The number of MC rays used (more rays, less noise, more time).
 - \odot Typical values $10^6 10^7$.
 - Set separately for dust free, dusty
 - The ray intensity below which it may be dropped or above which it will be split
 - Reference wavelengths for the polychromatic algorithm
 - Number of wavelengths for the dust

Other stuff

input file (!)
output file
the number of threads to use
random seed
whether to use a GPU
self-documenting keywords (just get copied into the output file for your own reference)

broadband parameters

Simple stuff

- Name of file specifying which filters you want
- Where to find the filter files
- Redshift
- Include Lyman alpha forest absorption?

A note about images

- The image outputs have units of surface brightness
 - W/m/m²/sr
- Because surface brightness is independent of distance, it's only affected by redshift dimming and k-correction
- If you want the flux, you need to know the solid angle subtended by the pixels, and for that you need the angular diameter distance
- Sunrise does not do cosmology this you need to do yourself

Working with Sunrise Episode 4: Performance

Performance

Onlike (most of) the hydro codes you've heard about, Sunrise doesn't use MPI but pthreads

One process per job means 1 node <=> 1 job
Job sizes mostly limited by available memory
Want a lot of memory on the node (32GB enough for moderately large runs)
Many cores on the node
Less memory required with fewer wavelengths and by skipping IR emission

Performance

Runtime is 10 - 100 CPU hours per snapshot
Depends on spatial & spectral resolution and optical thickness of model
Can accelerate dust emission calculation with a GPU (see Lecture 4)